If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16H^2+138H+55
We move all terms to the left:
-(16H^2+138H+55)=0
We get rid of parentheses
-16H^2-138H-55=0
a = -16; b = -138; c = -55;
Δ = b2-4ac
Δ = -1382-4·(-16)·(-55)
Δ = 15524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15524}=\sqrt{4*3881}=\sqrt{4}*\sqrt{3881}=2\sqrt{3881}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-138)-2\sqrt{3881}}{2*-16}=\frac{138-2\sqrt{3881}}{-32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-138)+2\sqrt{3881}}{2*-16}=\frac{138+2\sqrt{3881}}{-32} $
| X-12=9x+8 | | 2=-74+14x | | 0.8x-1.33=2.33x-3 | | 2=−74+14x | | 8=(w-5) | | 4/5x-1/1/3=2/1/3x-3 | | x(-7.9)=-0.9 | | 27=x(3-2x) | | 7x+4=12x-16 | | 27=x(32x) | | 2+(x+4)=(x+4)+4 | | 900=y2 | | 3(5x-2)=15x+6 | | 2+(x+4)=(x+4)+2 | | 4.5+1.5k=18-13 | | -3(t-10)=6 | | 2(x+4)=2(4+x) | | 2(x+4)=x+4)2 | | 13p+-14p=15 | | 8w-5w=-18 | | -3(3k-4)=75 | | 3(s-8)=3 | | -6/5x+-5/2=-7/3 | | 14-f=20 | | 5q-4q=19 | | 7x-5=9x-15 | | x/2.6=21 | | (2x+3)(x+3)=27 | | 5(x-4)=-27.5 | | x÷2.6=21 | | 4-7r+2=-22 | | 0.5y-12=10 |